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IAML — INFR10069 (LEVEL 10):
Assignment #2

Due on Monday, November 23, 2020 @ 16:00

NO LATE SUBMISSIONS

IMPORTANT INFORMATION

N.B. This document is best viewed on a screen as it contains a number of (highlighted)
clickable hyperlinks.

It is very important that you read and follow the instructions below to the
letter. You will be deducted marks for not adhering to the advice below.

Good Scholarly Practice: Please remember the University requirement regarding all
assessed work for credit. Details about this can be found at:

http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct

Specifically, this assignment should be your own individual work. We will employ tools for
detecting misconduct. Moreover, please note that Piazza is NOT a forum for discussing
the solutions of the assignment. You may, in exceptional circumstances, ask private
questions to the instructors if you deem that something may be incorrect, and if we feel
that the issue is justified, we will send out an announcement.

General Instructions

e There are two versions of this assignment. One for INFR10069 (level 10) and the
other for INFR11182 (level 11). The level 11 version has some additional parts.
MAKE SURE you are doing the assignment that corresponds to the
course you are registered on; you can check this on EUCLID.

e We will use the IAML Learn page for any announcements, updates, and FAQs on
this assignment. Please visit the page frequently to find the latest information.


http://web.inf.ed.ac.uk/infweb/admin/policies/academic-misconduct
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e You should use Python for implementing your solutions as this will standardise
the output and also provide a consistent experience with the labs. Set up your
environment as specified in the Labs. It is VERY IMPORTANT that you use
the exact same package versions as those specified in the requirements
file from the labs! Using the correct environment (i.e. py3iaml) is necessary to
ensure that your outputs are consistent with the expected solutions. The correct
package versions are specified here.

e If running import sklearn; print(sklearn.__version__) in your Jupyter Note-
book does not print the package version 0.19.1, then you are not using the correct
environment,.

e This assignment consists of multiple questions. MAKE SURE to use the correct
dataset for each question.

e This assignment accounts for 30% of your final grade for this course and is graded
based on a written report (compiled from a latex template which we provide). You
should submit not only the report, but also the code you wrote for the assignment.
Since this is not a programming course, your code is not graded, but those answers
in your report without corresponding code will not be graded.

e Some of the topics in this coursework are covered in weeks 7 and 8 of the course.
Focus first on questions on topics that you have covered already, and come back to
the other questions as the lectures progress.

e The criteria on which you will be judged include the quality of the textual answers
and/or any plots asked for.

e Read the instructions carefully, answering what is required and only that. Keep
your answers brief and concise. Specifically, for textual answers, the size of the
text-box in the latex template will give you an idea of the maximum length of your
answer. You do not need to fill in the whole text-box but you will be penalised
if you go over. This does not apply to figure-based answers.

e For answers involving figures, make sure to clearly label your plots and provide
legends where necessary. You will be penalised if the visualisations are not clear.

e For answers involving numerical values, use correct units where appropriate and
format floating point values to an appropriate number of decimal places.

e Some experiments may take long time (e.g. more than 10 minutes) to finish. It
will be a good idea that you test your code with a small number of samples for
debugging. You should use the whole data when your write your report.

Submission Mechanics

Important: You must submit this assignment by Monday, 23 November 2020
at 16:00. We do not accept Late Submissions for this coursework, except with
an extension approved by the Extensions and Special Circumstances (ESC)
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team. No extensions will be granted, except where specifically permitted by
a student’s Schedule of Learning Adjustments. Please see the I'TO Website
for further detalils.

e Your submission consists of a report (in PDF) and code. Marking is done based
on the report submitted, whereas submitted code is mainly used to check your own
individual work.

e We will use the Gradescope submission system for uploading PDF report files, and
the Learn system for uploading code files. Information describing how to upload
your completed assignment will be made available on the IAML Learn page.

e You should clone or download the Assignment Repository from https://github.com/
uoe-iaml/INFR10069-2020-CW2.

This contains:

1. The data you will need for the third part of assignment under the data direc-
tory.

2. The helper functions under helpers directory, which you should use to load
data in your program.

3. The Python template files under templates directory. They are iam101cw2_ql.py,
iaml01cw2_qg2.py, iam101cw2_qg3.py, and optionally iam101cw2_my_helpers.py,
which define the functions you should write in the assignment.

4. Two tex files, Assignment_2.tex and style.tex. These provide the template
for you to fill out the assignment questions. In particular, the template forces
your answers to appear on separate pages and also controls the length of textual
answers.

e You should modify the Assignment_2.tex template by:

1. Uncommenting and specifying your student number at the top of the document
(compilation will automatically fail if you forget to do this). Remove the ‘%’
and enter your student number e.g.

\newcommand{\assignmentAuthorName}{s1234567%}

2. Filling in the answers in the provided answerbox environment.

DO NOT modify anything else in the template and certainly DO NOT edit the
style file. We reserve the right to not mark assignments which do not
adhere to the template.

Note that the questions shown in Assignment_2.tex may not be the full copy of
the original ones in this assignment instruction document, but just short versions
of them to save space.

e Your should submit three files of code, one for each of Questions 1, 2 and 3, using
the template files specified in the following table. Note that you should use the
function names specified in the templates for each question. You should not change
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the function names or file names. In case you use helper functions of your own, you
should also submit them as a single file with the file name specified in the table.
Jupyter Notebook files (.ipynb) can be submitted instead of Python (.py) files. If it
is the case, you should replace “.py” with “.ipynb”.

File name Descriptions

iaml0lcw2_ql.py Code for Question 1
iaml0lcw2_q2.py Code for Question 2
iaml01cw2_qg3.py Code for Question 3
iaml01lcw2_my_helpers.py | Code for helper functions (optional)

Latex Tips

e To fill in text answers, you can modify the text inside the answerbox:

\begin{answerbox }{5em}
Your answer here
\end{answerbox}

with your answer (replacing ‘Your answer here’):

\begin{answerbox }{5em}
Steam locomotives were first developed in the United Kingdom
during the early 19th century and used for railway transport
until the middle of the 20th century.

\end{answerbox}

which, when compiled gives:

Steam locomotives were first developed in the United Kingdom during the
early 19th century and used for railway transport until the middle of the 20th
century.

e To add an image, you can use:

\begin{answerbox }{18em}
This image shows a train.
\begin{center}
\includegraphics [width=0.7\textwidth|{stock image.jpg}
\end{center}
\end{answerbox}

which will be compiled to:
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This image shows a train.

\.

Make sure that you specify the correct path to your image. For example. if your
image was stored in a directory called results, you would change the relevant line

to read:
\includegraphics [width=0.7\textwidth|{results /stock image.jpg}

You can find more information about inserting images into latex documents here.

e You can also add two images side-by-side:

\begin{answerbox } {18em}
Below we see two trains.

\begin{center}
\begin{tabular }{11}
\includegraphics [width=0.4\textwidth|{stock image.jpg}
&
\includegraphics [width=0.4\textwidth|{stock image.jpg}
\end{tabular}
\end{center}
\end{answerbox}

which will be compiled to:
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Below we see two trains.

e To add an inline equation, you can use the ‘$’ symbol to write:

\begin{answerbox }{3em}
I am using the following model, $y = \mathbf{x} T\ mathbf{w}$.
\end{answerbox}

which compiles to:

I am using the following model, y = x’w.

e To add a table for numerical results you can use:

\begin{answerbox }{7em}
Results are presented in the table below.

\begin{center}
\begin{tabular}{ |c|c|c| } \hline
Parameter Value & Train Accuracy & Test Accuracy \\ \hline
1 & 10.1\% & 9.1\% \\
2 & 12.5\% & 10.1\% \\\ hline
\end{tabular}
\end{center}
\end{answerbox}

which compiles to:

Results are presented in the table below.

Parameter Value | Train Accuracy | Test Accuracy
1 10.1% 9.1%
2 12.5% 10.1%

You can find more information about tables in latex here.

Page 6 of 15


https://www.overleaf.com/learn/latex/tables

IAML - INFR10069 (LEVEL 10)

e For a small number of questions we may ask you to show your code in your report.
You can include code as an image, but if you prefer you can use the following
command:

\begin{answerbox }{5em}
\begin{verbatim}

import numpy as np

mean_time = 10.0

print ( ‘mean time’, mean time)
\end{verbatim }
\end{answerbox}

which, when compiled gives:

import numpy as np
mean_time = 10.0
print(‘mean time’, mean_time)

e Once you have filled in all the answers, compile the latex document to generate the
PDF that you will submit. You can use Overleaf, your favourite latex editor, or just
run pdflatex Assignment_2.tex twice on a DICE machine to compile the PDF.
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Question 1 : (30 total points) Image data analysis with
PCA

In this question we employ PCA to analyse image data

Here we will investigate the use of principal component analysis (PCA) for image data.
Image data are made up of H-by-W pixels, where H and W denote the height and width,
respectively. For simplicity, we assume a gray-scale image. Let p;; denote the pixel value
at a grid point (i,7), 1 <7 < H, 1 < j < W, where pj; corresponds to the the pixel at
the top-left corner and pgw to the one at the bottom-right corner. We assume that p;;
takes an integer value between 0 and 255 (i.e. 8-bit coding). In computers, we store an
image of {p;;} in a D-dimensional vector, x = (z1,22,...,2p), where D = H x W, and
x1 corresponds to py; and xp to pyw.

We here use the Fashion-MNIST! data set of images — there are 10 classes, 2 6000 training
samples and 1000 test samples per class. Each sample is a 28-by-28 gray-scale image.
At first, download the data set to your local directory from either the original GitHub
repository, 'fashion-mnist /data/fashion’® or the mirrorred directory? in the Informatics
DICE. Note that the data set consists of four files,

t10k-images-idx3-ubyte.gz  t10k-labels-idxl-ubyte.gz
train-images-idx3-ubyte.gz train-labels-idxl-ubyte.gz

Once you have downloanded them to your local directory, load the data set in the following
manner in your code.

Xtrn, Ytrn, Xtst, Ytst = load_FashionMNIST(DataPath)

where you should replace DataPath with the actual path (i.e. directory) where you keep

the data set files. load_FashionMNIST() can be found in the helper file, iam101cw2_helpers.py.
Xtrn and Ytrn are training data (60000 samples) and corresponding labels, whereas Xtst

and Ytst are test data (10000 samples) and labels. There are 10 classes represented as an
integer value between 0 and 9. As you will see, Xtrn is a numpy.ndarray of 60000-by-784.

The i-th row vector of Xtrn corresponds to the pixel values of i-th image of 28-by-28
pixels, where i-element in Ytrn shows the corresponding class label.

Before you work on the tasks shown below, apply the following normalisation of 4 steps
to the data. Please note that we do not employ the commonly used standardisation or
Z-score normalisation for PCA in this coursework.

Step 1 Make a back up of Xtrn and Xtst by copying Xtrn to Xtrn_orig and Xtst to
Xtst_orig.

Step 2 Divide each element of Xtrn and Xtst by 255.0. (NB: Xtrn and Xtst are over-
written as a result.)

'https://github.com/zalandoresearch/fashion-mnist

2Class labels (in integer values) and their class names are as follows. 0:T-Shirt/Top, 1:Trouser,
2:Pullover, 3:Dress, 4:Coat, 5:Sandals, 6:Shirt, 7:Sneaker, 8:Bag, 9:Ankle boots.

3https://github.com/zalandoresearch/fashion-mnist/tree/master/data/fashion

“https://ifile.inf.ed.ac.uk/?path=/afs/inf.ed.ac.uk/group/teaching/iaml/cwk2/
fashion-mnist-data
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Step 3 Calculate the mean value of Xtrn for each dimension (i.e. column) and store the
result in a vector, Xmean, whose shape is (784,).

Step 4 Subtract Xmean from each row of Xtrn and Xtst, and store the result in Xtrn_nm
and Xtst_nm, respectively.

1.1 (3 points) Once you have applied the normalisation from Step 1 to Step 4 above,
report the values of the first 4 elements for the first training sample in Xtrn_nm, i.e.
Xtrn_nm[O0, :] and the last training sample, i.e. Xtrn_nm[-1,:].

1.2 (4 points) Using Xtrn and Euclidean distance measure, for each class, find the two
closest samples and two furthest samples of that class to the mean vector of the class.
Display the images of the mean vectors and samples you found in a 10-by-5 grid, where
the top row corresponds to the images for class 0 and the bottom to those for class 9.
Each column corresponds to the image of mean vector, the images of the 1st and 2nd
closest and 2nd and 1st furthest samples to the mean vector for that class, respectively
(from left to right). For each image sample, you should provide the class number and the
sample number in the data set. Note that we use 0-based indexing.

Explained your findings briefly.

Hint:  To display an image of a vector, reshape the vector to a 28-by-28 array, and use
matplotlib.pyplot.imshow() with ’gray v’ colormap. To display a total of 50 images in
a 10-by-5 grid, you could use subplot(), but it is also fine that you plot each image and
save it in a file separately, and you import them in latex and arrange them using the latex
tabular environment when you write a report.

1.3 (3 points) Apply Principal Component Analysis (PCA) to the data of Xtrn_nm using
sklearn.decomposition.PCA, and report the variances of projected data for the first five
principal components in a table. Note that you should use Xtrn_nm instead of Xtrn.

1.4 (3 points) Plot a graph of the cumulative explained variance ratio as a function of
the number of principal components, K, where 1 < K < 784. Discuss the result briefly.

1.5 (4 points) Display the images of the first 10 principal components in a 2-by-5 grid,
putting the image of 1st principal component on the top left corner, followed by the one
of 2nd component to the right. Discuss your findings briefly.
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1.6 (5 points) Using Xtrn_nm, for each class and for each number of principal components
K = 5,20,50,200, apply dimensionality reduction with PCA to the first sample in the
class, reconstruct the sample from the dimensionality-reduced sample, and report the Root
Mean Square Error (RMSE) between the original sample in Xtrn_nm and reconstructed
one.

You should report this using a table, in which each row corresponds to class and each
column corresponds to a value of K.

1.7 (4 points) Display the image for each of the reconstructed samples in a 10-by-4 grid,
where each row corresponds to a class and each row column corresponds to a value of
K =5, 20, 50, 200.

Note that you should add Xmean to each reconstructed sample to display the corresponding
image. Discuss your findings briefly.

1.8 (4 points) Plot all the training samples (Xtrn_nm) on the two-dimensional PCA plane
you obtained in Question 1.3, where each sample is represented as a small point with a
colour specific to the class of the sample. Use the ’coolwarm’ colormap for plotting.

Give comments on the separation of the classes, and explain your findings briefly.
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Question 2 : (25 total points) Logistic regression and
SVM

In this question we will explore classification of image data with logistic regres-
sion and support vector machines (SVM) and visualisation of decision regions.

Here we will look into logistic regression as an example of linear classifiers and SVM as
an example of nonlinear classifiers. The SVM was originally for binary classification, but
we consider an extended version to multi-class classification by forming one-to-rest (OvR)
classifiers, in which each classifier is trained in such a way that it separates the data of
the target class from those of the other classes.

Apart from basic classification experiments, we will visualise decision regions using PCA,
in which we consider a two-dimensional plane in the original vector space and visualise
how the points on the plane are classified.

We use the same image data set as the one for Question 1. Make sure that you apply
the four steps of normalisation described in Question 1 and use the normalised data, i.e.
Xtrn_nm for training and Xtst_nm for testing in this question.

2.1 (3 points) Carry out a classification experiment with multinomial logistic regression,
and report the classification accuracy and confusion matrix (in numbers rather than in
graphical representation such as heatmap) for the test set.

You should use sklearn.linear_model_LogisticRegression() with the default param-
eters. Make sure that you use Xtrn_nm for training and Xtst_nm for testing.

2.2 (3 points) Carry out a classification experiment with SVM classifiers, and report the
mean accuracy and confusion matrix (in numbers) for the test set.

You should use sklearn.svm.SVC() with the default parameters (kernel="rbf’, C' = 1.0,
gamma="auto’).

2.3 (6 points) We now want to visualise the decision regions for the logistic regression
classifier we trained in Question 2.1.

Since it is not possible to visualise the original vector of 784 dimensions, we consider a two-
dimensional plane, i.e. cross section, in the original space and visualise decisions regions
for the points on that plane, ignoring points outside the plane. We here employ the plane
spanned by the first two principal components, where we assume that the plane shares
the same origin as the one of the original vector space. Using matplotlib.pyplot.counterf()
and "coolwarm’ colormap, plot the decisions regions for the rectangular area of 100-by-100
grid points whose left-upper corner is (=501, 502) and right-bottom corner is (501, —5032),
where o7 and o, denote the standard deviations for the first principal component and
second principal component, respectively. You should also use matplotlib.colorbar() to
display a colorbar.

Report your findings briefly.

Hint: The projected point z = (z1, ..., 2p) with PCA is given as z = V7T, where V is a
D-by-D square matriz, whose i-th row corresponds to the i-th eigenvector. Note that both
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z and x represent the same point with different coordinate systems, the original vector
space and the one spanned with D eigenvectors, and the two coordinate systems share the
same origin. Any points on the 2D-plane spanned with the first two principal components
can be expressed as z = (21, 22,0,...,0). You can find the corresponding x in the original
vector space by x = zV.

2.4 (4 points) Using the same method as the one above, plot the decision regions for the
SVM classifier you trained in Question 2.2. Comparing the result with that you obtained
in Question 2.3, discuss your findings briefly.

2.5 (6 points) We used default parameters for the SVM in Question 2.2. We now want to
tune the parameters by using cross-validation. To reduce the time for experiments, you
pick up the first 1000 training samples from each class to create Xsmall, so that Xsmall
contains 10,000 samples in total. Accordingly, you create labels, Ysmall.

By using a 3-fold cross validation and Xsmall only, estimate the classification accuracy of
an SVM classifier with RBF kernel, while you vary the penalty parameter C' in the range
1072 to 10? (use 10 values spaced equally log space). Set the kernel coefficient parameter
gamma to auto for this question.

Plot the mean cross-validated classification accuracy against the regularisation parameter
C by using a log-scale for the x-axis. Report the highest obtained mean accuracy score
and the value of C' which yielded it.

2.6 (3 points) Train the SVM classifier on the whole training set by using the optimal
value of C' you found in Question 2.5.
Report the classification accuracy on the training set and test set. (Note that you do not
use cross validation for this question.)
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Question 3 : (20 total points) Clustering and Gaussian
Mixture Models

In this question we will explore K-means clustering, hierarchical clustering,
and GMMs.

We will look into clustering and mixture models using a multilingual speech data set,
in which we cluster the natural language from a given speech sample. Compared with
image data whose size is fixed, speech data is sequential and its length is variable by
nature, we thus cannot directly apply commonly used clustering algorithms. To tackle
the problem, we drastically simplify the task by representing each speech sample by the
fixed-dimensional mean vector of parameterised speech features for that sample.

The speech data we use here is a subset of CoVoST2, in which speech data of 22 languages
is available. We have converted each audio speech sample (which is normally a few seconds
in length) to the simplified representation, i.e. a mean vector, which has 26 elements.”
The resultant data have been stored in two files, speech_trn.npz and speech_tst.npz,
which are training set and test set, respectively.

Now, load the data sets in the following manner.

Xtrn,Ytrn,Xtst,Ytst = load_CoVoST2(DataPath)

where you should replace DataPath with the actual path (i.e. directory) where you keep
the dataset files, load_CoVoST2() can be found in the helper file, iam101cw2_helpers.py.
The training data, Xtrn, is a numpy.ndarray, whose shape is (22000, 26). The i-th row
vector represents the feature vector of 26 elements for the i-th speech sample. The same
format (but with different numbers of rows) applies to the test data, Xtst.% Ytrn[i] is
the label for Xtrn[i], representing the language name coded in an integer value between
0 and 21. The correspondence between language labels and language names can be found
in data/languages.txt. Instead of using language names, we use “Language ¢” to denote
the language whose label code is ¢, where 0 < ¢ < 21.

Note that you should NOT change the order of samples in the data set and you should
NOT standardise the data.

When you use Sklearn’s function for k-means clustering and Gaussian mixture models,
use the parameter random_state=1.

Due to the extreme simplification applied to data, you may not be able to obtain good
results. You do not need to worry if the result of clustering analysis does not match your
intuitions.

3.1 (3 points) Apply k-means clustering on Xtrn for & = 22, where we use sklearn.cluster. KMeans
with the parameters n_clusters=22 and random_state=1. Report the sum of squared
distances of samples to their closest cluster centre, and the number of samples for each
cluster.

SMFCC (mel-frequency cepstral coefficients) analysis was employed. A feature vector of 26 dimensions
consist of 12 MFCCs, energy, and 12 delta-MFCCs and delta-energy. Understanding the details of this
preprocessing is NOT required in order to answer this question.

SDifferent classes have different numbers of samples from each other.
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3.2 (3 points) Using the training set only, calculate the mean vector for each language,
and plot the mean vectors of all the 22 languages on a 2D-PCA plane, where you apply
PCA on the set of 22 mean vectors without applying standardisation. On the same figure,
plot the cluster centres obtained in Question 3.1.

You should format the figure nicely so that language and cluster information is clear.
Language information should be shown in terms of name, its abbreviation, or number.
Are the mean vectors and cluster centres similar? Discuss your findings briefly.

3.3 (3 points) We now apply hierarchical clustering on the training data set to see if there
are any structures in the spoken languages.

To avoid the analysis being cluttered, we represent the data of each language by the
mean vector for that language, so that we only use 22 mean vectors for this analysis
instead of using all the data in the training set. Now, using scipy.cluster.hierarchy, carry
out hierarchical clustering with the Ward’s linkage and display the dendrogram with an
option of orientation="right’. Provide appropriate labels to indicate the language of each
leaf node.

Discuss your findings.

3.4 (5 points) We here extend the hierarchical clustering done in Question 3.3 by using
multiple samples from each language.

To that end, apply k-means clustering with the parameters n_clusters=3 and random_state=1
to the training data for each language to find 3 cluster centres, which will result in

3 X 22 = 66 vectors in total.

Carry out hierarchical clustering with each of the linkage methods, 'ward’, 'single’, and
‘complete’ on the 66 vectors.

Plot a dendrogram for each method, and discuss the results briefly.

3.5 (6 points) We now consider Gaussian mixture model (GMM), whose probability distri-
bution function (pdf) is given as a linear combination of Gaussian or normal distributions,
ie.,

p(@) =Y piN (x|, T)-

k=1

where N(x|pg, Xx) is a Gaussian distribution of @ for k-th component with the mean
vector p, = (fk1,- - -, Mkp) and covariance matrix 3y = (crg?)
th distribution or component such that Ele pr = 1, and K is the number of mixture

components. N (x|ux, Xy) is given as

), pr is the weight for k-

1 1 _
N(z|pr, Xg) = (2m) D25, |12 exp (—5(55' — ) (@ — Hk)T) :

The covariance matrix ¥ is a D-by-D symmetric matrix, whose (i,j) element, o;;, is
the covariance between variables z; and z;. If the number of training samples is not as
sufficiently large as D, 3 becomes singular and non-invertible, which makes it impossible
to calculate the pdf. Naive Bayes is one of the techniques to mitigate the problem, in
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which you assume conditional independence among variables . As a result, the covariance
oi; = 0 for i # j, meaning all non-diagonal elements of 3 are zeros and only the diagonal
elements can be non zeros. Such a covariance matrix is referred to as “diagonal-covariance
matri’ as opposed to “full-covariance matriz” that does not use the assumption.

We now employ Gaussian Mixture Model (GMM) in sklearn to model the data for a
language.

Using the data for Language 0 only, for each type of covariance matrix, 'diagonal covari-
ance’ and ’full covariance’, and for each number of mixture components, K = 1, 3, 5, 10, 15,
train a GMM on the training data, and obtain the per-sample average log-likelihood on
the training data and test data for Language 0.

Report the result in a single graph and a table, and discuss your findings.
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https://scikit-learn.org/0.19/modules/generated/sklearn.mixture.GaussianMixture.html

	: (30 total points) Image data analysis with PCA
	(3 points) Once you have applied the normalisation from Step 1 to Step 4 above, report the values of the first 4 elements for the first training sample in Xtrn_nm, i.e. Xtrn_nm[0,:] and the last training sample, i.e. Xtrn_nm[-1,:]. 
	(4 points) Using Xtrn and Euclidean distance measure, for each class, find the two closest samples and two furthest samples of that class to the mean vector of the class. 
	(3 points) Apply Principal Component Analysis (PCA) to the data of Xtrn_nm using sklearn.decomposition.PCA, and report the variances of projected data for the first five principal components in a table. Note that you should use Xtrn_nm instead of Xtrn. 
	(3 points) Plot a graph of the cumulative explained variance ratio as a function of the number of principal components, K, where 1 K 784. Discuss the result briefly. 
	(4 points) Display the images of the first 10 principal components in a 2-by-5 grid, putting the image of 1st principal component on the top left corner, followed by the one of 2nd component to the right. Discuss your findings briefly. 
	(5 points) Using Xtrn_nm, for each class and for each number of principal components K = 5, 20, 50, 200, apply dimensionality reduction with PCA to the first sample in the class, reconstruct the sample from the dimensionality-reduced sample, and report the Root Mean Square Error (RMSE) between the original sample in Xtrn_nm and reconstructed one. 
	(4 points) Display the image for each of the reconstructed samples in a 10-by-4 grid, where each row corresponds to a class and each row column corresponds to a value of K=5,  20,  50,  200. 
	(4 points) Plot all the training samples (Xtrn_nm) on the two-dimensional PCA plane you obtained in Question 1.3, where each sample is represented as a small point with a colour specific to the class of the sample. Use the 'coolwarm' colormap for plotting. 

	: (25 total points) Logistic regression and SVM
	(3 points) Carry out a classification experiment with multinomial logistic regression, and report the classification accuracy and confusion matrix (in numbers rather than in graphical representation such as heatmap) for the test set. 
	(3 points) Carry out a classification experiment with SVM classifiers, and report the mean accuracy and confusion matrix (in numbers) for the test set. 
	(6 points) We now want to visualise the decision regions for the logistic regression classifier we trained in Question 2.1. 
	(4 points) Using the same method as the one above, plot the decision regions for the SVM classifier you trained in Question 2.2. Comparing the result with that you obtained in Question 2.3, discuss your findings briefly. 
	(6 points) We used default parameters for the SVM in Question 2.2. We now want to tune the parameters by using cross-validation. To reduce the time for experiments, you pick up the first 1000 training samples from each class to create Xsmall, so that Xsmall contains 10,000 samples in total. Accordingly, you create labels, Ysmall. 
	(3 points) Train the SVM classifier on the whole training set by using the optimal value of C you found in Question 2.5. 

	: (20 total points) Clustering and Gaussian Mixture Models
	(3 points) Apply k-means clustering on Xtrn for k = 22, where we use sklearn.cluster.KMeans with the parameters n_clusters=22 and random_state=1. Report the sum of squared distances of samples to their closest cluster centre, and the number of samples for each cluster. 
	(3 points) Using the training set only, calculate the mean vector for each language, and plot the mean vectors of all the 22 languages on a 2D-PCA plane, where you apply PCA on the set of 22 mean vectors without applying standardisation. On the same figure, plot the cluster centres obtained in Question 3.1. 
	(3 points) We now apply hierarchical clustering on the training data set to see if there are any structures in the spoken languages. 
	(5 points) We here extend the hierarchical clustering done in Question 3.3 by using multiple samples from each language. 
	(6 points) We now consider Gaussian mixture model (GMM), whose probability distribution function (pdf) is given as a linear combination of Gaussian or normal distributions, i.e., 


